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This study develops an analytical and numerical method for free vertical vibration of
suspension bridges including shear deformation and rotary inertia. Under the assumption
that the vertical displacement of the main cable is identical to that of the sti!ening girder, the
di!erential equation of motion containing three new terms are derived based on
Timoshenko's beam-column theory. The general analytical method for determining natural
frequencies and mode shapes of hinged- and continuous-suspension bridges are presented.
Special consideration is given is evaluating the natural frequency of simply supported
three-span suspension bridges. For "nite element analysis, the suspension bridge element is
developed by using Hermitian polynomials considering shear e!ects. The full truss model, in
which both cable and truss girder is modelled by a truss element, is used in order to
investigate the accuracy of the presented suspension bridge theory. Numerical examples are
provided to illustrate the applicability and e!ectiveness of the present analytical and
numerical method.
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1. INTRODUCTION

The suspension bridge is recognized as the most suitable bridge type for the long-span
scenarios and as such all of the bridges that exceed 1000 m span length are suspension
bridges. However, the #exibility caused by the cable system and its long span makes the
suspension bridge sensitive to dynamic loads. In order to approach dynamic problem such
as wind, vehicle or earthquake-induced oscillation, it is necessary to develop a simple
method of determining accurate natural frequencies and mode shapes.

Early attempts on free vibration of suspension bridge were made by Moissei! who
extended the elastic theory to the de#ection theory. Steinman [1] and Bleich et al. [2]
derived some formulas for computing natural frequencies and mode shapes based on the so
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called linearized de#ection theory. However, some factors like shear deformation and rotary
inertia, and so forth were neglected for simplicity. In the late 1970's Abdel}Gha!ar [3}5]
developed the methodology of free vertical, torsional and lateral vibration analysis of
suspension bridges by means of a variational principle and a "nite element approach that
neglected shear deformation e!ects. Hayashikawa [6] derived the method of free vertical
vibration based on linearized de#ection theory considering shear deformation and rotary
inertia. Hayashikawa [7] also took into account the e!ect of gravitational sti!ness due to
dead loads on the sti!ening girder for free torsional vibration. But he did not address the
occurrence of double-root frequencies at higher symmetric and anti-symmetric mode
shapes of hinged three-span suspension bridges.

Even though the e!ect of shear deformation and rotary inertia are relatively small in
comparison with that of bending deformation, it should be pointed out that the e!ect of
shear deformation can be increased when the sti!ening truss is replaced with an equivalent
beam for analysis. Timoshenko and Gere [8], Chugh [9], Kim [10] and many investigators
have studied the e!ect of shear deformation on the beam.

This study intends to develop an analytical and numerical method for free vertical
vibration of suspension bridges including shear deformation and rotary inertia. By applying
Hamilton's Principle, the di!erential equation of motion and boundary condition are
derived from the kinetic and potential energy of the cable and sti!ening girder. A general
analytical procedure for "nding natural frequencies and mode shapes of simply supported
suspension bridge considering the e!ects of shear deformation and rotary inertia is
presented based on the exact solution of the fourth order di!erential equation of motion. In
using this method, three new terms are included for comparison with previous studies [3, 6].
Both symmetric and anti-symmetric mode with the same natural frequency without tension
increment are observed in the hinged three-span suspension bridge.

For evaluating natural frequencies of continuous suspension bridge, Hayashikawa's
method [6] is applied. For "nite element analysis, the shear #exible suspension
bridge element is developed by using the Hermitian polynomials that take into
consideration the shear deformation e!ects. The full truss model, in which the main cable,
hanger, and truss girder are modelled by the truss element, respectively, is presented for
comparison. Finally, detailed numerical examples are provided to illustrate the
applicability and e!ectiveness of the present method and rigorous comparison is made with
the analytical solutions, numerical results from the suspension bridge element and the full
truss model.

2. BASIC ASSUMPTIONS

The following general assumptions and approximations are made.

(1) All materials in the bridge follow Hooke's law. Hangers are inextensible. Flexural
sti!ness of the cable is negligible.

(2) The initial dead load is carried by the main cable without causing stress in the sti!ening
girder.

(3) The cable is assumed to be of uniform cross-section and of a parabolic pro"le under
dead load.

(4) Vertical vibration of the cable is identical to that of the sti!ening girder.
(5) The additional horizontal component of cable tension H (t) caused by vibration is

identical throughout each span and is small in comparison with the initial horizontal
component of cable tension H

w
.
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3. DIFFERENTIAL EQUATION OF MOTION

In order to take into account the e!ect of shear deformation and rotary inertia.
Timoshenko's beam-column theory is applied in this study instead of the Bernoulli}Euler
beam theory. The di!erential equation of motion of a suspension bridge and their
associated boundary conditions are derived by means of Hamiltion's principle and are
given as follow:

d P
tÈ

tÇ

(¹!<) dt"0, (1)

where ¹ and < are kinetic and potential energy of the suspension bridge respectively. The
kinetic and potential energy of the bridge considering rotary inertia and shear deformation
can be written as
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in which l
i
is the translational displacement, b

i
the rotational displacement, m

i
the mass of

the bridge per unit length, o
i
the mass density, E the modulus of elasticity, G the shear

modulus, Ag the cross sectional area, Ig the moment of inertia, and f
s
the shear coe$cient.

Su$x i represents the ith span of the bridge, su$x g and c denote sti!ening girder and cable
respectively. The notation ( ) ) and ( )@ represent partial derivative of time, t and space,
x respectively. Virtual length of the cable ¸
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When the sti!ening truss girder is modelled as an equivalent Timoshenko beam, Ag is the
sum of the cross-sectional area of top and bottom chords, Ig is the area moment of inertia of
top and bottom chords about its neutral axis, and f

s
is the shear coe$cient.

The shear coe$cient is dependent on the shape of sti!ening girder and its detailed
formulas for typical truss girders are summarized in Table 1. Timoshenko and Gere [8]
presented the relation between the lateral displacement and shear force of a laced column.
This relation can be used to derive the shear coe$cient of truss girder. Some of the shear
coe$cients in Table 1 can be found in reference [4], and the other shear coe$cients are
derived based on the theory presented by Timoshenko and Gere.

The additional horizontal component of cable tension H (t) can be expressed as
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where u
i
is the longitudinal displacement in the ith span. Substituting equation (2) into

equation (1) and applying Hamilton's principle, the following di!erential equations of



TABLE 1

Shear coe.cient of various truss types

Truss Shape Shear coe$cient

1 N-type f
s
"
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E C
A

v
#A

d
sin3/

A
d
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v
sin2 / cos/D

2 Modi"ed warren f
s
"
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A
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E sin2/ cos/

3 Warren f
s
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A
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4 Multi-web f
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Note: A
d
is the cross-sectional area of diagonal member; A

v
the cross-sectional area of vertical member; and A the

cross-sectional area of top and bottom chord.
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motion are obtained:
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In the same manner, boundary conditions at the end of each span (x
i
"0, l

i
) are also found

to be as follows:
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By eliminating b
i
from equation (5), partial di!erential equation of motion for vertical free

vibration can be obtained as follows:
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where
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The underlined three terms in equation (7) denote the terms neglected in the previous
studies [3, 6]. The following equation of boundary condition at each end of the girder
(x

i
"0, l

i
) for a suspension bridge with simply supported sti!ening girder can be obtained

from equation (5a) by substituting the condition (b@
i
"0) that the bending moment is zero at

the ends of the girder:
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If additional cable tension H (t) or shear coe$cient f
si

is zero, equation (9) becomes lA
i
"0

at the ends of the girder.

4. ANALYTICAL SOLUTION FOR HINGED SINGLE-SPAN SUSPENSION BRIDGE

In this section, analytical solution for natural frequencies and mode shapes of a hinged
single-span suspension bridge are derived. Subscript i denoting ith span is omitted in this
section.

4.1. SYMMETRIC MODE

Partial di!erential equation of motion for a hinged single-span suspension bridge can be
rewritten in the following form
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The equations of boundary condition can be obtained from equations (6b) and (9).
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Longitudinal displacement at each end of the cable, vertical displacement and the
additional cable tension can be assumed as follows:
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l
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where u
n
is the natural frequency of the nth symmetric mode. Substituting equation (12) into

equation (10), the following ordinary di!erential equation is obtained:

a
1
/AA
n
!2a

2
/A

n
!a

3
/

n
#a

4
h"0, (13a)

h"
E
c
A

c
¸
E

(u
l
!u

0
)#

E
c
A

c
¸
E

mg

H
w
P

l

0

/
n
dx, (13b)

where

a
1
"EgIg#SH

w
, a

2
"1

2
[H

w
!(ogIg#Sm#SoHw

)u2
n
] (14)

a
3
"mu2

n
!Somu4

n
, a

4
"

mg

H
w

!

mg

H
w

Sou2
n
.

Substituting equation (12) into equation (11), equations of boundary condition are also
given as
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Suppose that h in equation (13a) is constant, general solution of equation (13a) can be
expressed as
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The following integral constants are obtained by substituting equation (16) into equation
(15):

c
1
"!tanhA

jl

2B
P!Dk2

j2#k2
, c

2
"

P!Dk2

j2#k2
(17)

c
3
"tanA

kl

2B
P#Dj2
j2#k2

, c
4
"!

P#Dj2
j2#k2

, P"

mg f
si

f
si
H2

w
#GAgHw

, D"

a
4

a
3

.



Figure 1. Con"guration of simply supported single-span suspension bridge: (a) hinge}hinge support;
(b) hinge}roller support.
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In the case of a suspension bridge as shown in Figure 1, the characteristic equation can be
obtained by substituting equation (16a) into equation (13b) and then integrating,
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Finally, the natural frequency can be obtained by solving the nth solution of equation (18)
and the mode shape is easily obtained by substituting the obtained natural frequency into
equation (16a).

4.2. ANTISYMMETRIC MODE

The vibration in antisymmetric mode causes no additional cable tension H (t) because the
upward and the downward de#ections on each side of the centerline balance with each
other. By applying this condition to equations (10) and (11), equation of motion and
boundary condition can be found to be as follows:
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The solution of equation (19) can be assumed as follows:
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is the natural frequency of the nth antisymmetric mode. Substituting equation (20)

into equation (19a) the following characteristic equation is obtained:
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Finally, natural frequency can be obtained by solving the nth solution of equation (21)
and the mode shape is obtained by substituting the obtained natural frequency into
equation (20).

In the case of a single-span suspension bridge with hinge-roller support shown in
Figure 1(b), the symmetric mode also causes no additional cable tension H(t) due to the
freely movable boundary condition at horizontal direction. That is,
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Therefore, natural frequencies of a single-span suspension bridge with a hinge-roller
support corresponding to the symmetric mode with zero additional cable tension can be
evaluated by inserting equation (23) into equation (21) and solving equation (21). These
modes are considered while calculating the analytical solutions of hinged three-span
suspension bridge in sections 5.2 and 5.3:
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5. ANALYTICAL SOLUTION FOR HINGED THREE-SPAN SUSPENSION BRIDGE

In this section, the results in section 4 are extended to a hinged three-span suspension
bridge and the analytical solution for natural frequencies and mode shapes are presented.
(see Figure 2).

5.1. SYMMETRIC MODE

Partial di!erential equation of motion for a hinged three-span suspension bridge are
given as equations (7) and (4). In the same manner as in section 4.1, the equations of
boundary condition for each span can be expressed in the same form as equation (11). In the
case of symmetric vibration, the "rst term on the right-hand side of equation (4) vanishes
because of +3
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u
i
(0, t)"u

i0
e*unt, u

i
(l
i
, t)"u

il
e*unt, l

i
(x

i
, t)"/

in
(x)e*unt, H (t)"he*unt. (24)

Finally, the following ordinary di!erential equation for the ith span is obtained:
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where the coe$cients a
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, a
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and a
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for the ith span is the same as in equation (14).
Equation (25) can be solved in the same manner as in section 4. The general solution of

equation (25a) can be expressed as
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Figure 2. Con"guration of three-span suspension bridge.
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where the coe$cients c
1i

, c
2i

, c
3i

and c
4i

are de"ned at span by span and have the same form
as equation (17). In the case of a hinged three-span suspension bridges, the characteristic
equation can be obtained by substituting equation (26) into equation (25b) and then
integrating:
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Consequently, natural frequencies and mode shapes causing additional cable tension can
be obtained from equations (27) and (26). On the contrary, it is possible that the globally
symmetric but locally antisymmetric modes in the side span give no additional tension.
Frequencies of these antisymmetric modes in the side span coincide with those
corresponding to globally as well as locally antisymmetric modes given in the next section
(see the 5th and the 10th modes in Figure 5).

5.2. ANTISYMMETRIC MODE

As already mentioned in section 4.2, the locally antisymmetric modes in the center and
the side span, respectively, cause no additional cable tension. Consequently, there is no
interaction between center span and side span in these modes. That is, independent
vibration modes are possible at each span. The equation of motion and boundary
conditions can be found to be as follows:
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In the same manner as in section 4.2, mode shape and the characteristic equation can be
expressed as follows:
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where u
in

is the nth antisymmetric natural frequency of the ith span.
On the contrary, it is possible that the globally antisymmetric but locally symmetric

modes in the side span also give no additional tension (see the 2nd and the 7th
antisymmetric modes in Figure 5). Frequencies corresponding to these symmetric modes in
the side span can be evaluated from equations (22) and (23).
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5.3. ANALYTICAL SOLUTION PROCEDURE

Based on the scheme presented in sections 5.1 and 5.2, the procedures for determining the
globally symmetric and antisymmetric vibration modes and frequencies can be summarized
as follows:

(1) Calculate the natural frequencies corresponding to globally symmetric modes from
equations (27) and (26).

(2) By substituting j
n
"2nn/l and i"2 into equation (29), evaluate the natural frequencies

corresponding to antisymmetric modes of the center span only.
(3) By substituting j

n
"2nn/l and i"1 into equation (29), evaluate the natural frequencies

corresponding to antisymmetric modes of the side span only.
(4) Substituting j

n
"(2n!1)n/l and i"1 into equation (29), obtain the natural frequencies

corresponding to symmetric modes of the side span only. It should be noted that these
modes add no additional tension.

(5) For determining globally symmetric modes, rearrange the natural frequencies
calculated at steps (1) and (3) in the descending order. The mode shapes of third span
corresponding to step (3) are obtained by drawing a mirror image of the "rst span.

(6) For determining globally antisymmetric modes, rearrange the natural frequencies
calculated in steps (2)}(4) in the descending order. The mode shapes corresponding to
steps (3) and (4) are obtained by drawing modes of the third span antisymmetrically with
respect to the center span.

6. ANALYTICAL SOLUTION FOR CONTINUOUS THREE-SPAN SUSPENSION BRIDGE

The rotational displacement can be assumed as follows:
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Natural and geometrical boundary conditions are found to be as follows:
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The general solution for translational and rotational mode shape can be expressed as
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The following integral constants for the the rotational mode shapes are obtained in terms
of integral constants for the translational mode shapes:
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In the case of continuous suspension bridges, the scheme developed by Hayashikawa [6]
can be used for determining the integral constants and natural frequencies.

7. SUSPENSION BRIDGE ELEMENT

The sti!ness and mass matrices of suspension bridge elements considering the e!ects of
both shear deformation and rotary inertia are derived in this section.

7.1. SHAPE FUNCTION CONSIDERING SHEAR DEFORMATION

In "nite element approach, the suspension bridge is assumed to be divided into a system
of discrete elements. It has been assumed previously that hangers are inextensible and
remain vertical during vibration and that consequently the vibrational displacements of
both the cable and the sti!ening girder are identical. If only vertical displacements are
considered, there are two nodal-degrees-of-freedom (d.o.f.) at each node: translational and
rotational displacement (Figure 3). The interpolation functions associated with the two
nodal-d.o.f. are assumed to be cubic Hermitian polynomials considering shear deformation.
Using the element displacement vector, vertical and rotational displacement are
interpolated as follows:
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Figure 3. Displacement vector of suspension bridge element.
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7.2. STIFFNESS AND MASS MATRICES OF THE SUSPENSION BRIDGE ELEMENT

The following kinetic and potential energy with respect to nodal displacement vector V
e

can be obtained by substituting equation (35) into equation (2) and integrating:
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where n is the total number of elements.
M

e
, Ke

cg
Ke

eg
are the consistent-mass matrix, the element gravity-sti!ness matrix of the

cable and the element elastic sti!ness matrix of the sti!ening girder considering both shear
deformation and rotary inertia respectively. The resulting matrices are listed in Appendix A

Applying the shape function to equation (4), additional horizontal component of cable
tension can be expressed as
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where fT
e
is the vector of the polynomials integrating shape function which may be expressed

as
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Using the equation (38), the second term on right-hand side of equation (37b) can be written
as
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TABLE 2

Buckling load (kN) for various truss type, ¸"100 m

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Equation (42)
Shear ignored 158067)9 158067)9 158067)9 158067)9 158067)9 158067)9
Shear considered 133657)6 136815)1 136815)1 146675)7 146675)7 136227)0
Full truss model 133595)5 136390)4 137253)5 147302)7 147237)5 135985)8
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in which U is the global nodal displacement and K
CE

is the global elastic sti!ness matrix of
the cable. Sti!ness matrix is a full matrix, i.e., not banded. This means that an interaction
exists not only between adjacent elements but also among all elements of the structure. By
inserting equation (37) into Hamilton's principle and by applying the variational operator,
the matrix equation of motion for the assemblage can be obtained in the following form:

MUG #(K
EG

#K
CG

#K
CE

)U"0, (41)

in which M is the global consistent mass matrix, K
EG

and K
CG

are the global sti!ness matrix
of the sti!ening girder and the global gravity sti!ness matrix of the cable.

8. NUMERICAL EXAMPLES

In order to demonstrate the validity of the present equivalent beam with shear coe$cient
in Table 1, the stability of the truss girder is investigated. The structural properties of the
truss girder are given as follows. E"2)05]108 kPa, G"78)86]106 kPa, A"0)125 m2,
A

d
"0)01404 m2, Al"0)02825 m2, mass per unit length of upper and bottom

chord"0)505102 t/m, mass per unit length of diagonal member"0)112245 t/m and the
mass per unit length of vertical member"0)220408 t/m. The buckling load based on
Timoshenko's beam theory is as follows:

P
cr
"

n2EI

¸2#(n2 f
s
EI/GA)

. (42)

Buckling load for various truss girder types listed in Table 1 are shown in Table 2. It is
noted that little di!erence is observed between buckling load evaluated from equation (42)
considering shear e!ects and buckling load analyzed with the full truss model.

Numerical examples for suspension bridge in Figure 4 are presented to demonstrate the
e!ectiveness of analytical and numerical solution developed herein. Comparisons with the
full truss model of suspension bridges are made. The full truss model represents that each
members of truss, cable and hanger are modelled by the truss element. The geometry and
structural properties of the numerical example bridge are given as follows [12]:
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Figure 4. Con"guration of three-span suspension bridge of vertical vibration.

TABLE 3

Natural frequencies of hinged single-span suspension bridge

This study

Analytical sol. Numerical sol. Full truss model

Mode Symmetric Antisymmetric Symmetric Antisymmetric Symmetric Antisymmetric

1 1)45492 0)93516 1)45497 0)93516 1)45612 0)93248
(1)46571) (0)93762) (1)46571) (0)93762)

2 2)16967 2)44887 2)16975 2)44924 2)15275 2)43022
(2)17617) (2)49918) (2)17617) (2)49919)

3 3)50520 4)66224 3)50664 4)66654 3)35579 4)68467
(3)63048) (4)92835) (3)63052) (4)92848)

4 6)00908 7)47258 6)01947 7)49443 6)00744 7)44526
(6)49619) (8)28579) (6)49652) (8)28654)

5 9)05841 10)7338 9)09966 10)8056 8)99266 10)4694
(10)3206) (12)5877) (10)3221) (12)5906)

6 12)4921 14)3129 12)6089 14)4930 12)4292 14)1502
(15)0956) (17)8392) (15)1008) (17)8480)

7 16)1884 18)1050 16)4541 18)4824 15)9179 18)1974
(20)8224) (24)0425) (20)8367) (24)0648)

8 20)0564 22)0333 20)5757 22)7288 19)5490 21)2664
(27)5017) (31)1985) (27)5354) (31)2481)

9 24)0313 26)0442 24)9408 27)2093 22)9036 24)4833
(35)1341) (39)3077) (35)2052) (39)4074)

10 28)0690 30)1015 29)5345 31)9152 25)8560 27)8090
(43)7199) (48)3702) (43)8572) (48)5561)

Note: ( ), shear neglected.
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Natural frequencies of a hinged single-span suspension bridge are given in Table 3 for
three di!erent methods, (1) the analytical solution, (2) the numerical solution using
suspension bridge element, and (3) the numerical solution using the full truss model. Data of
the center span is taken for analysis. Whether shear deformation and rotary inertia are
ignored or not, the results of the analytical solution are almost identical to those of the
numerical solution. It can be seen that the e!ect of shear deformation and rotary inertia on
natural frequencies is increased as the mode become higher. In the case of considering shear
e!ects, the analytical solution as well as the numerical solution show good agreement with
the full truss model.



TABLE 4

Natural frequencies of hinged three-span suspension bridge

This study

Analytical sol. Numerical sol. Full truss model

Mode Symmetric Antisymmetric Symmetric Antisymmetric Symmetric Antisymmetric

1 1)12667 0)92232 1)12669 0)92232 1)19845 0)93237
(1)13228)t (0)92466) (1)13228) (0)92466)

2 1)59586 1)68906 1)59591 1)68908 1)68899 1)95969
(1)60976) (1)70312) (1)60977) (1)70312)

3 2)37095 2)40782 2)37101 2)40818 2)43585 2)46388
(2)38127) (2)45584) (2)38127) (2)45585)

4 3)43330 4)57879 3)43469 4)58292 3)51519 4)59604
(3)55351) (4)83341) (3)55354) (4)83354)

5 4)87408* 4)87408* 4)87589 4)87589 4)95307 4)95349
(5)13028) (5)13028) (5)13030) (5)13030)

6 5)89822 7)33822 5)90821 7)35926 6)00492 7)73951
(6)36506) (8)11806) (6)36538) (8)11880)

7 8)89596 9)47146s 8)93574 9)48912 8)99668 9)83994
(10)1077) (10)6962) (10)1092) (10)6965)

8 9)48009s 10)5448 9)49773 10)6141 9)88493 10)5145
(10)7039) (12)3261) (10)7042) (12)3290)

9 12)2751 14)0688 12)3880 14)2433 12)2493 14)1678
(14)7789) (17)4628) (14)7840) (17)4715)

10 15)0137* 15)0137* 15)0922 15)0922 14)5921 14)5980
(18)4596) (18)4596) (18)4614) (18)4614)

Note: *, zero additional cable tension mode; s, close-to-zero additional cable tension mode; t( ), shear neglected.
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Applying the procedure listed in section 5.3, the natural frequencies of hinged
three-span suspension bridge are given in Table 4, while Figure 5 shows the mode
shapes of vertical vibration. Similar to the results of single-span suspension bridge, the
e!ect of shear deformation and rotary inertia is shown to become greater with higher
modes.

Furthermore, it is interesting to point out that the characteristic equation can have
double roots of eigenvalues. As shown in Table 4 and Figure 5, natural frequencies
corresponding to the 5th and the 10th symmetric and antisymmetric modes coincide with
double roots and these corresponding modes create no tension increment because of locally
antisymmetric mode shape in the side span (see scheme (3) in section 5.3).

On the other hand, the 2nd and 7th antisymmetric modes in Figure 5 correspond to the
globally antisymmetric but locally symmetric mode (see scheme (4) in section 5.3). It should
be noted that these mode do not create any additional horizontal component of cable
tension because the symmetric mode in the side span corresponds to the higher-roller or
roller-hinged support. However, the 2nd and 8th symmetric modes in Figure 5 correspond
to the globally and locally symmetric mode. The di!erence between the globally
antisymmetric but locally symmetric mode and the globally and locally symmetric mode
can be expressed as in Figure 6. As shown in Figure 6, the mode shapes of side span can be



Figure 5. Mode shapes of vertical vibration of hinged three-span suspension bridge.
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categorized in 3 cases due to its freely movable boundary condition. Figure 6(a) corresponds
to the globally antisymmetric but locally symmetric mode, and Figure 6(b) and 6(c)
correspond to the globally and locally symmetric mode. The former is named as &&zero
additional cable tension mode'' and the latter is named as &&close-to-zero additional cable
tension mode''. Because of the globally symmetric mode, minor tension change occurs at the
center span in Figure 6(b) and 6(c). The natural frequencies of the 2nd symmetric and
antisymmetric modes, and the 8th symmetric and the 7th antisymmetric modes in Figure 5
do not coincide with each other due to this tension change in the center span. A greater
di!erence can be found in the natural frequencies of the 2nd symmetric and antisymmetric
modes.

Other symmetric and antisymmetric modes in Figure 5 can be evaluated using schemes
(1) and (2) in section 5.3 respectively.

Some of the computed natural frequencies of the continuous three span type are
presented for the "rst 10 modes of the symmetric and antisymmetric vibrations in Table 5.
Similar to the results of hinged suspension bridge, the present study shows good agreement
with the full truss model especially at higher modes. Also the e!ect of shear deformation and
rotary inertia is shown to become greater with higher modes. The values of the natural



Figure 6. Locally symmetric mode in side span of hinged three-span suspension bridge.

TABLE 5

Natural frequencies of continuous three-span suspension bridge

This study

Analytical sol. Numerical sol. Full truss model

Mode Symmetric Antisymmetric Symmetric Antisymmetric Symmetric Antisymmetric

1 1)19457 0)99665 1)19463 0)99667 1)22351 1)01393
(1)20842) (1)00337) (1)20842) (1)00337)

2 1)61630 1)89504 1)61637 1)89512 1)69679 2)03080
(1)63301) (1)92992) (1)63301) (1)92992)

3 2)52958 2)62593 2)52969 2)62651 2)56266 2)60304
(2)56418) (2)71981) (2)56418) (2)71983)

4 3)63790 4)65952 3)63961 4)66337 3)63341 4)61753
(3)80274) (4)92220) (3)80279) (4)92230)

5 5)22110 5)41971 5)22411 5)42376 5)18252 5)33341
(5)59276) (5)91485) (5)59283) (5)91495)

6 6)23418 7)58085 6)24578 7)60407 6)18213 7)62772
(6)89647) (8)51489) (6)89685) (8)51571)

7 9)02503 9)85018 9)06323 9)87552 8)99860 9)79892
(10)2748) (11)3654) (10)2761) (11)3662)

8 10)0578 10)9059 10)0861 10)9785 10)4463 10)8769
(11)8650) (13)1414) (11)8660) (13)1444)

9 12)5248 14)2289 12)6437 14)4011 12)2455 14)6369
(15)3538) (17)7336) (15)3592) (17)7412)

10 15)3479 15)5106 15)4524 15)6133 14)8506 15)7789
(19)2987) (19)9589) (19)3034) (19)9640)

Note: ( ), shear neglected.
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frequencies of continuous three-span suspension bridges are generally larger than those of
hinged three-span suspension bridges. The di!erence between them is clearly represented by
their respective boundary conditions for the sti!ening girders.

9. CONCLUSION

This study develops an analytical and numerical method for free vertical vibration of
suspension bridges including shear deformation and rotary inertia. By applying Hamilton's
principle, the di!erential equation of motion and boundary condition are derived from the
kinetic and potential energy of the cable and sti!ening girder. Three new terms which were
neglected in previous studies are included in this study. General solutions for free vertical
vibrations are presented for "nding natural frequencies and mode shapes of single- and
three-span suspension bridges. For "nite element analysis, the shear #exible suspension bridge
element is developed by using Hermitian polynomials considering shear deformation e!ects.

Detailed numerical examples are provided to illustrate the applicability and e!ectiveness
of the present method. Furthermore, rigorous comparison with full truss model has been
made. A substantial di!erence in frequencies of higher mode was found when compared
with a case in which (1) the shear deformation and rotary inertia was taken into
consideration and (2) a case in which the shear deformation and rotary inertia was not
taken into consideration. It can be concluded that the e!ects of shear deformation and
rotary inertia should not be neglected for computing natural frequencies of higher modes. In
addition, it should be pointed out that double-root frequencies corresponding to the
globally symmetric and antisymmetric modes, respectively, can occur in the hinged
three-span suspension bridges and also, the globally antisymmetric but locally symmetric
modes in side span which create no tension change can be found.
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APPENDIX A: MASS AND STIFFNESS MATRIX OF SUSPENSION BRIDGE ELEMENT

Consistent-mass matrix, the element gravity-sti!ness matrix of the cable and the element
elastic-sti!ness matrix of the sti!ening girder are as follows:
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APPENDIX B: NOMENCLATURE

A cross-sectional area
Ag sum of the cross-sectional area of top and bottom chords (truss)
E modulus of elasticity
f cable sag
f
s

shear coe$cient
G shear modulus
H

w
initial horizontal component of cable tension

H(t) additional horizontal component of cable tension
Ig moment of inertia (equivalent beam) or moment of inertia of top and bottom chord about

its neutral axis (truss)
K

CG
global gravity-sti!ness matrix of the cable

K
CE

global elastic-sti!ness matrix of the cable
K

EG
global sti!ness matrix of the sti!ening girder

¸
E

virtual length of the cable
M global consistent-mass matrix
m mass of the bridge per unit length
u longitudinal displacement
U global nodal displacement
l translational displacement
V
e

nodal displacement vector
b rotational displacement
o mass density
/ mode shape
u natural frequency

Subscripts
g sti!ening girder
c cable
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